

Licensed to: Admin User

Job Name: Untitled

1.0 INPUT

1.1 Dimensions

Breadth b = **300** mm Depth = **600** mm h

1.2 Reinforcement Cover

Clear Cover for Bottom C_{ob} = **25** mm Clear Cover for Top = **25** mm C_{ot} Side Cover = **25** mm C_{os}

1.3 Design Loads

Design Moment Μ = 140 kNm **Design Shear Force** ٧ = 0 kNService Moment M_s = 100 kNm

1.4 Materials

Concrete Grade $= 35 \text{ N/mm}^2$ f_{cu} = **460** N/mm² Main Reinforcement Grade f_y $= 460 \text{ N/mm}^2$ Shear Reinforcement Grade f_{vv} $= 200 \text{ kN/mm}^2$ Modulus of Elasticity of Steel E_s Aggregate Size $\mathsf{h}_{\mathsf{agg}}$ = **20** mm

1.4.1 Material Safety Factors

Concrete in Compression = 1.5 γ_{mc} Concrete in Shear = 1.25 γ_{mcs} Reinforcement = 1.15 γ_{ms}

1.5 Crack Width

Check for Crack Width Yes Maximum Allowable Crack Width W_k = **0.3** mm

2.0 OUTPUT Ref: BS 8110 - Part 1

2.1 Flexure Design (Sagging)

2.1.1 Tension Layer Effective Depth Calculation

2.1.1.1 Layer: 01

2 - D 20 + 1 - D 16 Rebars =**829.4** mm² Area of Reinforcement Provided A_{t1} Depth of Layer 01 **=557** mm d_{t1}

=**829.4** mm² Total Area of Tension Steel Provided A_{st} Effective Depth for Tension =557 mm

2.1.2 Compression Layer Effective Depth Calculation

2.1.2.1 Layer: 01

2 - D 16 Rebars Area of Reinforcement Provided A_{c1} **=402.1** mm² Depth of Layer 01 d_{c1} **=41** mm =**402.1** mm² Total Area of Compression Steel Provided A_{sc} **Effective Depth for Compression =41** mm

 $=M/(b*d^2*f_{cu})=0.043$ Κ Cl. 3.4.4.4 K Factor

K' $=0.2336 / \gamma_{mc} = 0.156$ K' Factor

=d * min([0.5 + (0.25 - K / 0.9)^{1/2}], 0.95) = **529** mm Lever Arm Distance

 $A_{smom} = M / (f_v * z / \gamma_{ms}) = 661.6 \text{ mm}^2$ Area of Tension Reinforcement

Table $A_{min} = 0.13\% * b * h = 234 mm²$ Minimum Area of Reinforcement 3.25

 $A_{max} = 4\% * b * h = 7200 mm^2$ Maximum Area of Reinforcement

Tension Reinforcement $A_{st} = 829.4 \text{ mm}^2$ $A_{sc} = 402.1 \text{ mm}^2$ Compression Reinforcement

2.2 Crack Width Ref: BS 8110 - Part 2

 $=(20000 + 200 * f_{cu}) / 2 = 13500 \text{ N/mm}^2$ Modulus of Elasticity of Concrete E_c

 D_1 **=20** mm Nearest Tension Bar Dia Tension Reinforcement Cover C_{0} **=33** mm

 $=A_{st} / (b * d) = 0.005$ **Tension Steel Ratio** $=A_{sc} / (b * d) = 0.002$ Compression Steel Ratio p.

S **=107** mm Spacing of Tension Bars (Outer layer) $=E_{s}/E_{c}=14.8$ Modular Ratio m

=d * $[[(m * p + (m - 1) * p')^2 + 2 * (m * p + (m - 1) * (d_2 / d) * p')]^{1/2}$ Depth of Neutral Axis (By Iteration)

- (m * p + (m - 1) * p')] = **176.5** mm

eq:13

Lever Arm Distance Z =d - (x / 3) = 498.2 mm

K2 =(x/(2*d))*(1-(x/(3*d)))=**0.14 K2 Factor**

 $=(m-1)*(1-(d_2/x))=$ **10.61** K3 Factor К3

 $=M_s / (A_{st} * z) = 242 N/mm^2$ f_s **Reinforcement Stress**

 $M_s / ([(K2 * b * d^2) + (K3 * A_{sc} * [1 - (d_2 / d)])]) = 7.6$ f_c **Concrete Stress**

N/mm²

 $=(f_S/E_S)*(h-x)/(d-x)=0.00135$ Strain at Soffit of Beam

Strain for Stiffening of Concrete btw. =[b * (h - x)²] / [3 * E_s * A_{st} * (d - x)] = **0.00028**

Cracks

 $= \varepsilon_1 - \varepsilon_2 = 0.00106$ Average Strain at Soffit of Beam ϵ_{m}

Distance of Crack to Nearest Tension Bar $a_{cr} = [(S/2)^2 + (C_0 + D_1/2)^2]^{1/2} - D_1/2 = 58.6 \text{ mm}$

Design Surface Crack Width $W_{cr} = 3 * a_{cr} * \epsilon_m / [1 + 2 * (a_{cr} - C_o) / (h - x)] = 0.167 \text{ mm}$ eq:12

3.0 SUMMARY

Description	Required	Actual	Status
Area of Tension Reinforcement (mm ²)	661.6	829.4	PASS
Minimum Area of Reinforcement (mm²)	234	829.4	PASS
Maximum Area of Reinforcement (mm²)	7200	829.4	PASS
Crack Width (mm)	0.3	0.167	PASS