

ECBEARING Masonry Bearing Wall Design

Licensed to: Admin User

Powered By: O ECPlus www.ecplusdesign.com

1.0 INPUT

1.1 Masonry Wall

Wall Type		Solid
Load Bearing Leaf Thickness	t	= 100 mm
Height	h	= 2400 mm
Effective Height	h_{eff}	= 2400 mm

1.2 Pier

Width	W _p	= 1	00 mm
Thickness	tp	= 1	00 mm
Spacing	Ws	= 1	000 mm

1.3 Masonry Properties

Туре	Clay ar	nd Calcium silicate bricks
Compressive Strength	p _u	= 30 N/mm ²
Mortar Designation	М	= M12/(i)

1.4 Masonry construction

Masonry Unit category	MC	= Category I
Construction Control Category	CC	= Normal

1.5 Bearing

Beam Spanning		Across Wall
Edge Distance	b_{ed}	= 0 mm
Width	W _b	= 100 mm
Length	L _b	= 100 mm
Eccentricity at Top of Wall	e _x	= 0 mm
		No

1.5.1 Spreader

1.6 Loads

1.6.1 Concentrated Load

Characteristic Dead Load	G _k	= 10 kN
Characteristic Imposed Load	Q _k	= 8 kN
1.6.2 Distributed Load		
Characteristic Dead Load	g _k	= 0 kN/m
Characteristic Imposed Load	q _k	= 0 kN/m

2.0 OUTPUT

2.1 Masonry Bearing Design

Stiffness Coefficient	К	= 1	cl.24.4.1
Effective Thickness of Masonry Wall	t _{eff}	= 100 mm	cl.24.4
Characteristic Compressive Strength	f_k	= 8.3 N/mm ²	Table 2
Partial Safety Factor for Material Strength	Υ _m	= 3.1	Table 4

2.2 Design Loads

Design Concentrated Load	F	= ($G_k * 1.4$) + ($Q_k * 1.6$) = 26.8 kN
Design Distributed Load	f	= ($g_k * 1.4$) + ($q_k * 1.6$) = 0 kN/m

2.3 Bearing Check Without Spreader

Bearing Safety Factor	Υ_{bear}	= 1.25	Cl. 30
Design Bearing Stress	f_{cap}	= F / (W _b * L _b) + f / t = 2.68 N/mm ²	
Allowable Bearing Stress	f _{cpp}	= $\Upsilon_{\text{bear}} * f_k / \Upsilon_m = 3.347 \text{ N/mm}^2$	

2.3.1 Bearing check at 0.4 * h below the level of bearing

Additional Eccentricity	e _a	= t * (((h _{eff} / t _{eff}) ² / 2400) - 0.015) = 22.5 mm	
Eccentricity at Top of Wall	e _x	= 0 mm	
Total Eccentricity	et	= (0.6 * e _x) + e _a = 22.5 mm	
Design Eccentricity	e _m	= max(e _x , e _t , 0.05 * t) = 22.5 mm	
Capacity Reduction Factor	β	$= 1.1 * (1 - (2 * e_m / t)) = 0.61$ Table	27
Bearing Length Distributed at 0.4 * h	Ld	= W _b + 0.4 * h + min(0.4 * h, b _{ed}) = 1060 mm	
Design Bearing Stress	f _{ca(0.4h)}	₎ = F / (L _d * t) + f / t = 0.253 N/mm ²	
Allowable Bearing Stress	f _{cp(0.4h}	$_{\rm j} = \beta * f_{\rm k} / \Upsilon_{\rm m} = 1.62 \rm N/mm^2$	

3.0 SUMMARY

3.1 Bearing Check Without Spreader

Description	Required	Available	Status
Bearing stress (N/mm ²)	f _{cap} = 2.68	f _{cpp} = 3.347	PASS

3.2 Bearing Check at 0.4 * h Below the Level of Bearing

Description	Required		Available		Status
Bearing Stress (N/mm ²)	f _{ca(0.4h)}	=0.253	f _{cp(0.4h)}	= 1.62	PASS